On analogues of Poincaré-Lyapunov theory for multipoint boundary-value problems—Correction

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adjoints of Multipoint-integral Boundary Value Problems

The dual system to Ly=y'+Py, J_AtyOi)+ f1 K(t)v(t)dt = 0 is found when the setting is ¿°(0,1), 1 /2 -1 l/jj dt Kp' denote those vectors in X which are absolutely cont...

متن کامل

Triple Positive Solutions for Multipoint Conjugate Boundary Value Problems

For the nth order nonlinear differential equation y(n)(t) = f(y(t)), t ∈ [0, 1], satisfying the multipoint conjugate boundary conditions, y(ai) = 0, 1 ≤ i ≤ k, 0 ≤ j ≤ ni − 1, 0 = a1 < a2 < · · · < ak = 1, and ∑k i=1 ni = n, where f : R→ [0,∞) is continuous, growth condtions are imposed on f which yield the existence of at least three solutions that belong to a cone.

متن کامل

Positive Solutions for Multipoint Boundary-value Problem with Parameters

In this paper, we study a generalized Sturm-Liouville boundaryvalue problems with two positive parameters. By constructing a completely continuous operator and combining fixed point index theorem and some properties of the eigenvalues of linear operators, we obtain sufficient conditions for the existence of at least one positive solution.

متن کامل

An Efficient Method for Solving Multipoint Equation Boundary Value Problems

In this work, we solve multipoint boundary value problems where the boundary value conditions are equations using the Newton-Broyden Shooting method (NBSM).The proposed method is tested upon several problems from the literature and the results are compared with the available exact solution. The experiments are given to illustrate the efficiency and implementation of the method. Keywords—Boundar...

متن کامل

Multiple Solutions of Generalized Multipoint Conjugate Boundary Value Problems

We consider the boundary value problem y(n)(t) = P (t, y), t ∈ (0, 1) y(ti) = 0, j = 0, . . . , ni − 1, i = 1, . . . , r, where r ≥ 2, ni ≥ 1 for i = 1, . . . , r, ∑r i=1 ni = n and 0 = t1 < t2 < · · · < tr = 1. Criteria are offered for the existence of double and triple ‘positive’ (in some sense) solutions of the boundary value problem. Further investigation on the upper and lower bounds for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1969

ISSN: 0022-247X

DOI: 10.1016/0022-247x(69)90254-6